
Process Book

YouTube viz - Process book
1. Welcome in the world of YouTube Videos

1.1 Origin of the idea
Our main aim with this project was to learn valuable skills from this class, while creating a visualization that
was meaningful and usable in purposes outside of the class. To combine these two requirements, we asked the
dlab where Timoté is doing his semester project, if any PhD students would need an interactive visualization
for his research. Manoel Horta provided us with his recent scrap of 96 million YouTube videos metadata that
he was using to study the evolution of trends on YouTube from 2008 to 2019. We were given carte blanche on
how to visualize this data but kept in touch with him for feedbacks and insightful discussions.

1.2 Early visualization ideas
To stay within the aim of the research and make something that could be accompany the paper submission, we
wanted to show the different kinds of content and formats that prospered on YouTube over the last decade.
The solution we found the most appropriate to illustrate the above consisted of several graphical elements.

A. A stacked area plot scaled to 100%

This chart would illustrate the popularity of the different categories of videos on YouTube over time. The
initial idea was to be able to compare their relative importance over the years. The stacked area would
highlight a region on hover to show it is clickable to �lter the information presented below by category.

B. The most popular videos table

On hover, a table would have displayed the best videos on YouTube at a given time. We thought we might
display the id of the video, the channel that posted it, the number of view and a link to watch the video on
YouTube.

https://dlab.epfl.ch/
mailto:manoel.hortaribeiro@epfl.ch

C. A more detailed view per category

By clicking a category in the stacked area plot, we wanted to make appear a third interactive graph below the
table of the best videos. This graph was intended to display different aspect of the category selected over the
time. By clicking on a segmented control, the user could decide to visualize either the duration, the number of
view, the ratio like/dislike or the average ranking of a category over time.

1.3 Intended Preprocessing challenges

A. Data Processing

One of the �rst issues we ran into is the sheer size of our dataset. Compressed it is over 10gb. We could never
hope to �t that into any browser. The �rst step was to aggregate the data in order to reduce it to a much
smaller �le that could be easily sent over when loading the page.

Thus, the data was aggregated at a weekly and category level using PySpark. For each week and category, we
compute a score. We also precompute histograms for the views, like and dislike counts and the video duration
distribution. The bins are �xed and known so we don’t need to write them in the �les. We can later easily
aggregate this data over multiple categories or weeks. Finally, we only keep the top 20 videos per category and
week for the top videos table in order to reduce the �le size to less than 8mb compressed.

B. Scoring scheme

We have been mentioning giving a score for each category, but how do we get it? For a given category and a
time period , its score can be de�ned as

Where for a given video : is its category, its publication date, its number of views and the weight
associated with the channel that published the video. This weight is inversely proportional to the probability
of a channel being sampled during the scrap phase and was provided by Manoel. Rarer channels have higher
weights because they are underrepresented in our sample. The score is then scaled down by 1 million to have a
comprehensible Y axis.

2. A path full of pitfalls

2.1 A stacked area only? Not such a good idea!
When we �rst succeed at representing the categories of videos in a static graph, we faced a problem: the graph
was not as smooth as expected. Instead of a constant and regular evolutions of the trends over time, the
weekly granularity chosen made the paths look sharp, with a lot of peaks and depths. Moreover, we realized
that the categories were unbalanced.

Ci

T score(Ci, T)

score(Ci, T) = ∑
cj=Ci∧tj∈T

vj ⋅ wj

j cj tj vj wj

Induced problems:

The spikes of the paths made it dif�cult to visualize any category that was not displayed at the bottom
of the graph. Since the superposition of the chart in the graph increases this spiking effect, the category
that were displayed on the top of the graph were quite unreadable.
The fact that the categories were unbalanced made some of them look ridiculously small: this approach
was not optimal.
With a normal stacked graph, we could not tell easily which of the category was the most important at a
certain date. In other terms, it was quite dif�cult to have an idea of the ranking of the categories at a
given point of time.

Approached solutions:

As we could not imagine a single plot that would have solved all the above problems, we decided to implement
two different graphs:

The first one was a clever stacked area:

By selecting any category, it should have changed the chart order, to make the category appear bottommost.
That way, the category would not have been distorted by a superposition with charts below it. Moreover,
selecting this category dynamically adapts the y-axis, in order to maximize the space occupied by this category
on screen.

We called our second solution the Interleaving Chart:

On the left: what we wanted to design, on the right: our results

The origin of the idea came to our mind when we were looking at some area chart
example found over internet like this one

These plots are basically a superposition of charts which are �lled with transparency. This allow the user to see
clearly the exact shape of each chart. The limitation is that the more categories there are, the more confusing
the plot becomes. As we had 7 categories to plot, it was too much for such a graph. Hence, we decided to
implement something new: it works the same that the above area chart, but without transparency: we only
show the lowermost color. At any timestamp, you can know the categories ranking by looking at vertical color
interleaving.

The implementation of this graph was quite challenging. To get coherent result, we had to look at our time
series to �nd the critical indexes where any two series were crossing each other. Then we had to stroke the
charts. With the help of the method getPointAtLength(), we could iterate along the paths to �nd the exact
timestamp (with some delta approximation, expressed in pixel) where the charts were crossing. Once we had
the exact intersections timestamps, we then �ll the chart in the order they had to appear between any 2
critical timestamps with the help of a clip-path. As this computation was taking a lot of time, we had to
optimize it by retaining only the indexes that were in the visible area of the graph and computing the
intersection value with an error that was expressed in pixel. This was the most ef�cient way to provide to the
user eyes a clean result independently of how much he was zooming in the graph. At that time, the
computation time was small enough to provide the user a nice experience, but there were too many elements
in the canvas. This was making the web page lag when the mouse was on hover the graph. To get rid of this, we
had to skip the rendering of the charts which width were smaller than a certain pixel tolerance. In the �nal
version, we decided to compute the chart interleaving 500ms after the user ended to scroll in the graph.

2.2 A fixed x-axis? Not enough!
As our time series were long enough to make it necessary, we decided to let the user zoom in the graph.

You can even click and drag in the graph,

or use the d3 brush to zoom and explore the data.

https://developer.mozilla.org/en-US/docs/Web/API/SVGGeometryElement/getPointAtLength
https://github.com/d3/d3-brush

2.3 Check out the best videos out there
Below the main visualization, we present the top videos in a table in which you can play it using our embed
player while continuing to explore the dataset. The table is the only “plot” that is in dc.js , the other ones
being in pure d3.js . It shows information such as the publication date, the number of views, likes, dislikes
and its duration. The data is sorted by number of views. We use crossfilter in order to be able to �lter the
large data that we have over a given period of time or a given category. The �lters are coordinated with your
actions on the main visualization.

2.4 Let’s learn more about our data
We mentioned in the preprocessing section that we also pre-computed some histograms. They are displayed
below the table and also listen to the same crossfilter �lters. They allow the user to learn more about the
distribution of 4 important metrics: videos duration, views, likes and dislikes count. Compared to the early
version, we polished the results and separated it into the 2 histograms you can see. In our opinion, it is
important to be able to visualize the duration distribution separately from the counts that are inherently
linked together: more views usually mean more likes/dislikes.

We added transitions to accentuate the change when a �lter is applied.

2.5 A Simple redirection to YouTube? Not cool enough!
While we might have put a link to YouTube to let the user watch the video he found interesting, he could have
been sad not to be offered the possibility to watch his video directly in our website 😁

We added transitions to accentuate the change when a �lter is applied.

http://dc-js.github.io/dc.js/
http://crossfilter.github.io/crossfilter/

Hence, we decided to put an embedded YouTube video player directly in our web page: the user can browse the
content of YouTube in our web page while listening to his favorite music. Finally, this player is completely
draggable, resizable or minimizable.

2.6 Accessibility
After a discussion with our professor Laurent Vuillon, we decided to choose colors for our graph that are
colorblind-friendly. Yet having to represent 7 different categories, it is very hard to �nd a palette that suits all
the type of colorblind people. We tried our best and decided to include some highlighting with strong contrast
on hover to help those people.

We hope you visit our visualization by clicking here

Acknowledgement
We �rst wish to thank Manoel Horta, PhD student at dlab EPFL, for providing us the dataset as well as many
insightful feedbacks that helped us create the Visualization that you �nd on our homepage. We are also
grateful to dlab EPFL, headed by Robert West, that let us use their infrastructure to handle the preprocessing.
Finally, we thank Laurent Vuillon that mentored us during this project.

Peer assessment
As we were a group of two students, no one could take the opportunity to hide behind the rest of the group.
Thus, we both contributed equally to this project.

Jonathan Kaeser
Jonathan spent most of his time on the visualizations for the �rst graph, as well as the embedded YouTube
player. He oversaw the visual direction of this project.

Timoté Vaucher
Timoté took care of the rest of the visual interface. Besides that, he handled the data preprocessing, the
communication with the dlab and the website integration on GitHub Pages.

http://localhost:4000/youtube-viz/
https://pages.github.com/

